SmokeNMirrors_Main Module

Main

Call Function InitializePortM

Call Function InitializePortAD

Call Function InitializePWM

Call Function InitializePortT

Call Function InitializeTimer

Forever

Begin

Set eventcode to value returned by CheckGameEvents

Call Function HandleGameEvents and pass eventcode as parameter

(Both CheckGameEvents and HandleGameEvents are part of GameControl Module)

End

InitializePortM

Set Bit M0 to input from Coin Sensor

Set Bit M1 to input from Laser Break circuit

Set Bit M2 to input from Target

Set Bit M3 to input from Difficulty switch

Set Bit M4 to output to the Laser Fire

Set Bit M4 to low to begin with

Set Bit M5 to output to the Vibrating Motor

Set Bit M5 to low to begin with

InitializePortAD
Initialize the A/D converter and port AD with bits 3 to 7 as outputs and bits 0-2 as analog inputs
If the initialization is unsuccessful, print an error message
InitializePWM

Initialize the PWM subsystem using PWM12_Init

Set Channels 0,1 and 2 to output a duty cycle with a predefined period
InitializePortT

Set Bit T3 to output to Solenoid 1

Set Bit T4 to output to Solenoid 2

Set Bit T5 to output to Clock Countdown

Set Bit T6 to output to Clock Reset

Set Bit T7 to output

Set Bits T3 to T7 as low to begin with

InitializeTimer

Initialize the S12Timer module with a 1ms rate

GameControl Module

CheckGameEvents
Determines which event has taken place during game play. Takes no parameters and returns a character value to indicate the corresponding event.

Set Event is NO_EVENT

If Solenoid 1 timer has expired

Event is SOLENOID_1_CLOCK_EXPIRE_EVENT

If Solenoid 2 timer has expired

Event is SOLENOID_2_CLOCK_EXPIRE_EVENT

If the timer in between the two solenoids has expired

Event is BETWEEN_SOLENOIDS_CLOCK_EXPIRE_EVENT

If the clock pulse timer has expired

Event is COUNTDOWN_CLOCK_PULSE_EXPIRE_EVENT

If the reset pulse timer has expired

Event is COUNTDOWN_RESET_PULSE_EXPIRE_EVENT

If the GameState is GAME_OVER

If coin is inserted

Event is COIN_INSERT_EVENT

If Servo Ground timer has expired

Event is SERVO_GND_TIMER_EXPIRE_EVENT
Endif

If the GameState is GAME_ON

If the Laser Fire timer has expired

Event is LASER_CLOCK_EXPIRE_EVENT
If the Clock countdown value is greater than zero and the countdown clock number has expired

Event is COUNTDOWN_CLOCK_EXPIRE_EVENT
If the difficulty level has been changed

Event is DIFFICULTY_CHANGE_EVENT
If the target has been hit

Event is TARGET_HIT_EVENT
If the Laser (non-contact sensor) has been broken

Event is LASER_BREAK_EVENT
If the game clock expires

Event is CLOCK_VALUE_TO_ZERO_EVENT
If the potentiometer has been changed

Event is POT_CHANGE_EVENT

Endif

Return Event
HandleGameEvents
Handles the services required for every event parameter returned by the CheckGameEvents function.

If Event is LASER_BREAK_EVENT

If Laser is not firing

FireLaser

Endif

Endif

If Event is DIFFICULTY_CHANGE_EVENT

SwitchDifficulty

Endif

If Event is TARGET_HIT_EVENT

Stop the Laser time and Clock Countdown timer

Call SetSolenoid1 to release lower Solenoid to dispense prize

Call StartSolenoidTimer to start timer and hold solenoid 1 open

Set Bit M5 to high to hit victory buzzer

Set GameState to GAME_OVER

Call StartServoTimer to start timer and ground the servos

Endif

If Event is LASER_CLOCK_EXPIRE_EVENT

Clear the expired timer

StopFiringLaser

Endif

If Event is POT_CHANGE_EVENT

UpdateServos

Endif

If Event is SERVO_GND_TIMER_EXPIRE_EVENT

Clear the expired timer

Ground the servos

Endif

If Event is COIN_INSERT_EVENT

StartGame

Endif

If Event is SOLENOID_1_CLOCK_EXPIRE_EVENT

Clear expired timer

Hold Solenoid 1

Start timer between the two solenoids

Endif

If Event is BETWEEN_SOLENOIDS_CLOCK_EXPIRE_EVENT

Clear expired timer

Release Solenoid 2

Start timer to keep Solenoid 2 in released state

Endif

If Event is SOLENOID_2_CLOCK_EXPIRE_EVENT

Clear expired timer

Hold Solenoid 2

StopFiringLaser

Endif

If Event is COUNTDOWN_RESET_PULSE_EXPIRE_EVENT

Clear expired timer

Set the Clock Reset line to low

Endif

If Event is COUNTDOWN_CLOCK_PULSE_EXPIRE_EVENT

Clear expired line

Set the Clock Countdown line to low

Endif

If Event is COUNTDOWN_CLOCK_EXPIRE_EVENT

Clear expired timer

Decrement the display on the Clock by 5 secs

Endif

If Event is CLOCK_VALUE_TO_ZERO_EVENT

Stop Clock Countdown and Laser timers

StopFiringLaser

Start Servo Grounding timers

Set GameState = GAME_OVER

Endif

CheckPots

CheckPots check to see if any of the three potentiometers have changed beyond the pot change thresholds. It takes no parameters and returns the state of the pots as POT_CHANGED or POT_UNCHANGED.

Set static variable lastPot1State = -1

Set static variable lastPot2State = -1

Set static variable lastPot3State = -1

Set static variable currentPot1State to read the analog value from Pin1 of Port AD

Set static variable currentPot2State to read the analog value from Pin2 of Port AD

Set static variable currentPot3State to read the analog value from Pin3 of Port AD

If ((currentPot1State - lastPot1State > POT_CHANGE_THRESHOLD)

 or (lastPot1State - currentPot1State > POT_CHANGE_THRESHOLD))

lastPot1State = currentPot1State

return POT_CHANGED

Endif

If ((currentPot2State – lastPot2State > POT_CHANGE_THRESHOLD)

 or (lastPot2State – currentPot2State > POT_CHANGE_THRESHOLD))

lastPot2State = currentPot2State

return POT_CHANGED

Endif

If ((currentPot3State – lastPot3State > POT_CHANGE_THRESHOLD)

 or (lastPot3State – currentPot3State > POT_CHANGE_THRESHOLD))

lastPot3State = currentPot3State

return POT_CHANGED

Endif

Return POT_UNCHANGED
UpdateServos

UpdateServos sets the duty cycle for each servo to match the potentiometer value.

Set static variable currentPot1State to read the analog value from Pin1 of Port AD

Set static variable currentPot2State to read the analog value from Pin2 of Port AD

Set static variable currentPot3State to read the analog value from Pin3 of Port AD

If (currentPot1State >= 0)
Servo1DutyCycle = (unsigned char)((unsigned int) DUTY_CYCLE_RATIO * currentPot1State/512)

If (Servo1DutyCycle > MAX_DUTY_CYCLE)

Servo1DutyCycle = MAX_DUTY_CYCLE

Endif

If (Servo1DutyCycle < MIN_DUTY_CYCLE)

Servo1DutyCycle = MIN_DUTY_CYCLE

Endif

Set duty cycle on Channel 0 to Servo1DutyCycle

Endif

If (currentPot2State >= 0)
Servo2DutyCycle = (unsigned char)((unsigned int) DUTY_CYCLE_RATIO * currentPot2State/512)

If (Servo2DutyCycle > MAX_DUTY_CYCLE)

Servo2DutyCycle = MAX_DUTY_CYCLE

Endif

If (Servo2DutyCycle < MIN_DUTY_CYCLE)

Servo2DutyCycle = MIN_DUTY_CYCLE

Endif

Set duty cycle on Channel 1 to Servo2DutyCycle

Endif

If (currentPot3State >= 0)
Servo3DutyCycle = (unsigned char)((unsigned int) DUTY_CYCLE_RATIO * currentPot3State/512)

If (Servo3DutyCycle > MAX_DUTY_CYCLE)

Servo3DutyCycle = MAX_DUTY_CYCLE

Endif

If (Servo3DutyCycle < MIN_DUTY_CYCLE)

Servo3DutyCycle = MIN_DUTY_CYCLE

Endif

Set duty cycle on Channel 2 to Servo3DutyCycle

Endif

StartLaserTimer

Starts the timer for firing the Laser. Inputs no parameters and returns no value.

Initialize Laser timer for duration depending on current difficulty level

CheckCoin

Checks coin sensor. Inputs no parameters and returns COIN_INSERTED, COIN_NOT_INSERTED, or NO_EVENT

Set Coin_status = COIN_NOT_INSERTED

If (Coin_status = COIN_NOT_INSERTED) and (presence of coin is detected)

Coin_status = COIN_INSERTED

Return Coin_status

Elseif (Coin_status = COIN_INSERTED) and (absence of coin is detected)

Coin_status = COIN_NOT_INSERTED

Return Coin_status

Endif

Return NO_EVENT

CheckLaserBreak

Checks non-contact laser sensor. Inputs no parameters and returns LASER_BROKEN, LASER_NOT_BROKEN, or NO_EVENT

Set laserBreak = LASER_NOT_BROKEN

If (laserBreak = LASER_NOT_BROKEN) and (laser is broken)

laserBreak = LASER_BROKEN

Return laserBreak

Elseif (laserBreak = LASER_BROKEN) and (laser is not broken)

laserBreak = LAER_NOT_BROKEN

Return laserBreak

Endif

Return NO_EVENT
CheckDifficultySwitch

Checks if difficulty has been changed. Inputs no parameters and returns DIFFICULTY_CHANGE or DIFFICULTY_NO_CHANGE

If (DifficultyLevel = EASY) and (difficulty is changed)

Return DIFFICULTY_CHANGE

Elseif (DifficultyLevel = HARD) and (difficulty is changed)

Return DIFFICULTY_CHANGE

Endif

Return DIFFICULTY_NO_CHANGE

CheckTarget

Checks if the target has been hit. Inputs no parameters and returns TARGET_HIT, TARGET_NOT_HIT or NO_EVENT
Set lastTarget1 = TARGET_NOT_HIT;

If (lastTarget1 = TARGET_NOT_HIT) and (target is hit)

lastTarget1 = TARGET_HIT

return TARGET_HIT

Elseif (lastTarget1 = TARGET_HIT) and (target is not hit)

lastTarget1 = TARGET_NOT_HIT

return TARGET_NOT_HIT

Endif

Return NO_EVENT
StartGame

Sets up the game to start playing. Inputs no parameters and returns no value.

Set GameState = GAME_ON

Turn off vibrating motor by setting Bit M5 to low

Reset the game clock to 25 secs

Start the Countdown Reset timer

FireLaser

Fires the Laser and starts timers for Laser firing and Clock Countdown.

Fire Laser by setting Bit M4 to high
Set LaserState = LASER_FIRING

If (DifficultyLevel = HARD)

Fire Laser for shorter duration

Else

Fire Laser for 5 secs

Endif

Start the Laser timer

Start the Clock Countdown timer

StopFiringLaser

Stops firing the Laser. Inputs no parameters and returns no value.

Set Bit M4 to low

Set LaserState = LASER_NOT_FIRING

SetSolenoid

Sets the state of a solenoid to be either released or held. Inputs solenoid number and state. Returns no value.

If (solenoid_state = SOLENOID_RELEASE)

Release Solenoid

Endif

If (solenoid_state = SOLENOID_HOLD)

Hold Solenoid

Endif

StartSolenoidTimer

Starts timer for either lower, upper solenoid or the airlock. Inputs solenoid number and returns no value.

If (solenoid_number = SOLENOID_1)

Start timer for Solenoid 1 for 1 sec

Endif

If (solenoid_number = SOLENOID_2)

Start timer for Solenoid 2 for 1 sec

Endif
If (solenoid_number = BETWEEN_SOLENOIDS)

Start timer for airlock for 3 secs

Endif
SwitchDifficulty

Switch the game difficulty. Inputs no parameters and returns no value.

If (DifficultyLevel = EASY)

DifficultyLevel = HARD

Endif

If (DifficultyLevel = HARD)

DifficultyLevel = EASY

Endif

SetCountdownReset

Sets the value of the reset line to high or low. Inputs reset value and returns no value.

If (reset_value = RESET_LINE_HI)

Set Bit T6 to high

Endif

If (reset_value = RESET_LINE_LO)

Set Bit T6 to low

Endif

SetCountdownClock

Sets the clock value of the Countdown clock to high or low. Inputs the clock value and returns no value.

If (clock_value = CLOCK_LINE_HI)

Set Bit T5 to high

Endif

If (clock_value = CLOCK_LINE_LO)

Set Bit T5 to low

Endif

StartCountdownResetTimer

Starts the Countdown reset pulse timer. Inputs no parameters and returns no value.

Start the Countdown reset timer to count to 10ms

StartCountdownTimer

Starts the Countdown timer. Inputs no parameters and returns no value.

Start the Countdown clock timer to count to 1 sec or 500ms depending on difficulty being EASY or HARD respectively

StartCountdownClockPulseTimer

Starts the timer for the clock pulse. Inputs no parameters and returns no value.

Start the clock pulse timer to count to 100ms

GroundServos

Grounds the three servos by setting the PWM duty cycles to zero. Inputs no parameters and returns no value.

Set duty cycle of channels 0, 1 and 2 to zero.

StartServoTimer

Starts timer for grounding the servos. Inputs no parameters and returns no value.

Start the servo ground timer to count to 2 secs

StopTimers

Stop timers for laser fire and countdown clock to prevent these events from continuing after game is over. Inputs no parameters and returns no value.

Stop timer for the laser

Stop timer for the Countdown clock
